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ABSTRACT

Breast tissue microarrays facilitate the survey of very large num-
bers of tumours but their scoring by pathologists is time consum-
ing, typically highly quantised and not without error. Automated
segmentation of cells and intra-cellular compartments in such data
can be problematic for reasons that include cell overlapping, com-
plex tissue structure, debris, and variable appearance. This paper
proposes a computationally efficient approach that uses colour and
differential invariants to assign class posterior probabilities to pix-
els and then performs probabilistic classification of TMA spots us-
ing features analogous to the Quickscore system currently used by
pathologists. It does not rely on accurate segmentation of individual
cells. Classification performance at both pixel and spot levels was
assessed using 110 spots from the Adjuvant Breast Cancer (ABC)
Chemotherapy Trial. The use of differential invariants in addition
to colour yielded a small improvement in accuracy. Some reasons
for classification results in disagreement with pathologist-provided
labels are discussed and include noise in the class labels.

Index Terms— Biological tissues, image texture analysis

1. INTRODUCTION

Tissue microarrays (TMAs) are an array-based high-throughput

technique that facilitates gene expression and the survey of

very large numbers of tumours. Hundreds of cylindrical

biopsies from individual tumours can be distributed in a sin-

gle microarray block. Sections of the block provide targets

for parallel in situ detection of DNA, RNA, and protein tar-

gets in each specimen on the array, and consecutive sections

allow the rapid analysis of hundreds of molecular markers in

the same set of specimens [1]. Camp et al. [2] have concluded

that two cylindrical biopsies per patient are sufficient to ade-

quately represent the expression of three common antigens in

invasive breast carcinoma.

The scoring by pathologists of breast-TMA sections from

large numbers of individuals is time consuming and suffers

from inter- and intra-observer variability, perceptual errors,

and severe quantisation that leads to the loss of potentially

valuable information. Thus, there is strong motivation for the

development of automated methods for quantitative analysis

and grading of breast-TMA image data.

∗Thanks to the Breast Cancer Research Trust for funding, and to the

British Machine Vision Association and the Leng Trust for sponsoring.

Accurate segmentation of cells and intra-cellular compart-

ments in such data can be problematic for reasons that include

cell overlapping, complex tissue structure, debris and vari-

able appearance. This paper explores the hypothesis that au-

tomated scoring of entire tissue spots need not rely on highly

accurate detection and segmentation of individual cells and

intra-cellular compartments. Rather we propose a computa-

tionally efficient system that uses colour and differential in-

variants to assign posterior probabilities to pixels and then

classifies TMA spots using features analogous to those used

by pathologists.

The spatial orientation of each sub-cellular compartment

(considered independently) in a breast-tissue histological sec-

tion is irrelevant to diagnosis. This suggests that it could be

advantageous to characterise pixels in breast-TMA images by

using features that are invariant to rotation and translation.

Schmid et al. [3, 4] discuss the characterisation of luminance

signals through differential invariants computed as combina-

tions of Gaussian partial derivatives, which in turn have been

theoretically studied by Koenderink et al [5].

Perhaps the most closely related work to that described

here concerns automated Gleason grading of prostate tissue

images. Specifically, Tabesh et al. [6] reported the use of

colour-channel histograms with texture features and Doyle et

al. [7] used gland morphological features (such as total area

and perimeter length) and texture features for this purpose.

Differential invariants were used by Ranzato et al. [8] for

recognition of several categories of biological particles (but

not for tissue analysis).

Section 2 presents the data. Sections 3 and 4 describe the

methods and results for pixel and spot classification, respec-

tively. Finally, some conclusions and recommendations for

future work are provided.

2. DATA

The data used in this work consist of colour images of breast-

TMA spots originating from the National Cancer Research In-

stitute’s Adjuvant Breast Cancer (ABC) Chemotherapy Trial

[9]. A total of 110 spots subjected to progesterone-receptor

(PR) nuclear staining were used, 2 for each of 55 trial partic-

ipants. The scoring of each spot by a pathologist is available,
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Fig. 1. Manual annotation of epithelial nuclei within a circu-

lar sub-region of a TMA spot.

namely the type of spot (normal, tumour, stroma, fat, blood,

or invalid), the estimated proportion of epithelial nuclei that

are immunopositive, and their estimated strength of staining.

These two estimates are given in the form of a Quickscore

[10], i.e. a pair of integer values, the former between 0 and 6,

the latter between 0 and 3. Each spot has a diameter of about

3000 pixels (or 700 μm).

A circular sub-region (500 pixels in diameter) was ran-

domly selected on each of 20 TMA spots, and then manu-

ally annotated. The contours of approximately 700 epithelial

nuclei were thus manually marked and labelled as either im-

munonegative or immunopositive (henceforth abbreviated as

i- and i+, respectively). Figure 1 shows an example of an an-

notated sub-region. The left-hand side of this sub-region is

populated with epithelial cells (i- and i+), whereas its right-

hand side exhibits mostly connective tissue (background). A

typical, elongated stromal cell is pointed out.

3. PIXEL CLASSIFICATION

In a first stage, the developed system classifies the pixels of

input images into three classes, namely background (BG), i-

epithelial nuclei (E-), and i+ epithelial nuclei (E+). This is

achieved by computing the posterior probabilities of a pixel

belonging to each of the classes via Bayes’ theorem, as shown

in (1), where t ∈ {BG, E−, E+} is the class, x represents

the pixel’s features, and the numerator corresponds to a like-

lihood function multiplied by a prior P (t). A pixel is then

assigned to a class if the computed posterior probability of

belonging to that class is the highest.

P (t|x) =
P (r, g, b|t) ∏

k,σ P (dk,σ|t)P (t)
P (x)

(1)

The features x considered for each pixel are its colour val-

ues r, g, b and four differential invariants. The kth invariant

Table 1. Confusion matrices of pixel classification

(in thousands of pixels), for three likelihood functions

P (r, g, b|t)
∏

k,σ
P (dk,σ |t).

(a) Only r, g, b

True Predicted

BG E- E+

BG 1666 14 6

E- 98 17 0

E+ 93 1 62

(b) k = 1, 2, 3, 4; σ = 8

True Predicted

BG E- E+

BG 1503 155 27

E- 31 81 3

E+ 35 15 106

(c) k = 1, 2, 3, 4; σ = 1, 8

True Predicted

BG E- E+

BG 1466 190 30

E- 25 86 5

E+ 29 23 104

based on standard deviation σ is here denoted by dk,σ , with

k ∈ {1, 2, 3, 4} and σ ∈ {1, 8}, and defined in (2). Each L
term stands for a Gaussian derivative kernel convolved with

the luminance function I(x, y) of the image. For example,

Lxx(x, y, σ) = (Gxx ∗ I)(x, y, σ), where Gxx(x, y, σ) =
∂2G(x, y, σ)/∂x∂x [3, 4].

d1,σ = LxLx + LyLy (2)

d2,σ = LxxLxLx + 2LxyLxLy + LyyLyLy

d3,σ = Lxx + Lyy

d4,σ = LxxLxx + 2LxyLyx + LyyLyy

Zero-order invariants are not used here, as they represent

merely the Gaussian smoothing of the grey-level function and

colour values are being used as features. Kernels built with

σ = 8 (besides σ = 1) were found interesting, as they can

focus on parts of epithelial nuclei as opposed to full nuclei

(the average radius of a nucleus is 16 pixels).

The differential invariants are assumed independent of

one another and of colour given the class, therefore the

likelihood factors as in (1). These factors are computed

as histograms from training data.

The system was trained with 10 of the annotated sub-

regions and tested with the remaining 10. Table 1 shows

the resulting confusion matrices for three different likelihood

functions. Figure 2 shows the corresponding results for the

sub-region shown previously in Figure 1. When full spot im-

ages are processed, the posterior probabilities computed for

each pixel are stored (along with its assignment to a class), as

this information is used in the spot-classification stage.

4. SPOT CLASSIFICATION

From each spot, two features are computed that aim to for-

malise the values of the Quickscore method used by pathol-
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(a) Ground truth (b) Only RGB

(c) k = 1, 2, 3, 4; σ = 8 (d) k = 1, 2, 3, 4; σ = 1, 8

Fig. 2. (a) Manual labelling of a TMA sub-region and (b–d)

results of pixel classification for three likelihood functions.

The background is shown in grey, i- nuclei in light grey, and

i+ nuclei in black.

ogists. The first feature is the mean posterior probability of

a pixel belonging to the i+ epithelial class, computed over all

pixels assigned to that class; this formalises the strength of

staining. The second feature is the number of pixels classified

as i+ epithelial, divided by the total number of pixels classi-

fied as epithelial (i- or i+); this approximates the proportion

of epithelial nuclei that are i+.

Since 55 of the 110 available spots had a Quickscore of

0 × 0 (no strength of staining, no i+ epithelial nuclei), a two-

class experiment was performed to classify spots into i+ and

i-. Generalised linear models (GLMs) were trained through

the iterated re-weighted least squares (IRLS) algorithm to

classify spots. All the code was implemented in Matlab. The

spot classifier uses the Netlab [11] implementation of GLMs.

A leave-2-out experiment was carried out with the collec-

tion of 110 spot images. At each iteration, the 2 spots belong-

ing to a given participant were left out, in order to assess the

capacity of the system to deal with data from new participants.

Table 2 shows the resulting correct-classification rates for dif-

ferent likelihood functions, as well as the confusion matrices

for the functions that yielded the lowest and the highest rates.

Figure 3 shows a scatter plot of spot data in the feature

space (k = 1, 3, 4; σ = 8). A typical decision boundary is

also shown and two outliers are pointed out. Figure 4 shows

some examples of classified spots. Figure 5 shows the two

spots pointed out as outliers in Figure 3. The spot on the

Table 2. Spot classification rates and confusion matrices, for

different likelihood functions.
(a) Spot correct-classification rates

Likelihood function Rate (%)

Only r, g, b 79

k = 1, 3, 4; σ = 8 84

k = 1, 2, 3, 4; σ = 8 82

k = 1, 2, 3, 4; σ = 1, 8 81

(b) Only r, g, b

True Predicted

i- i+

i- 46 10

i+ 13 41

(c) k = 1, 3, 4; σ = 8

True Predicted

i- i+

i- 50 6

i+ 12 42
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Fig. 3. Scatter plot of spot data, with typical decision bound-

ary marked as ‘0.5’ and two outliers pointed out.

left is scored as i+ (fat, 2 × 2), but nevertheless shows no

evidence of i+ epithelial nuclei; it was classified as i-. Upon

confirmation, this turned out to be correct, as fat spots cannot

have a positive score. In turn, the spot on the right is scored

as i- (fat, 0× 0), but shows some debris whose colour is close

to that of i+ nuclei; it was incorrectly classified as i+.

5. CONCLUSIONS AND RECOMMENDATIONS

In the pixel-classification stage, the use of differential invari-

ants in addition to colour yielded a substantially higher num-

ber of pixels correctly classified as belonging to epithelial

nuclei (both i- and i+). The accompanying higher number

of false positives is mostly due to under-segmentation of the

nuclear regions. In the spot-classification stage, a small im-

provement in classification accuracy reflected the addition of

invariants. Reasons for classification results in disagreement

with pathologist-provided labels include noise in the class la-

bels, highlighting the need to deal with samples that are in-

correctly or noisily labelled by human experts.
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(a) A correctly classified spot with i+ nuclei that is far

from the decision boundary.

(b) A correctly classified spot with no i+ nuclei that is

far from the decision boundary.

(c) A spot very near to the decision boundary.

Fig. 4. Left: examples of spots; right: pixels labelled as class

with highest posterior.

(a) Spot without i+ nuclei,

scored as i+ and classified

as i-.

(b) Spot with some dark

debris, scored as i- and

classified as i+.

Fig. 5. Two outlier spots.

Future work will investigate models that can estimate un-

certainties in the labelling process [12]. It is expected that

this should improve classification rates and enable incorrectly

labelled spots to be found automatically.
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